Improving the Lateral Resolution of Quartz Tuning Fork-Based Sensors in Liquid by Integrating Commercial AFM Tips into the Fiber End

نویسندگان

  • Laura González
  • David Martínez-Martín
  • Jorge Otero Diaz
  • Pedro José de Pablo
  • Manel Puig-Vidal
  • Julio Gómez-Herrero
چکیده

The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor

Sidewall roughness measurement is becoming increasingly important in the micro-electromechanical systems and nanoelectronics devices. Atomic force microscopy (AFM) is an emerging technique for sidewall scanning and roughness measurement due to its high resolution, three-dimensional imaging capability and high accuracy. We report an AFM sidewall imaging method with a quartz tuning fork (QTF) for...

متن کامل

Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes.

We report on atomic force microscopy (AFM) in ambient and liquid environments with the qPlus sensor, a force sensor based on a quartz tuning fork with an all-electrical deflection measurement scheme. Small amplitudes, stiff sensors with bulk diamond tips and high Q values in air and liquid allow to obtain high resolution images. The noise sources in air and liquid are analyzed and compared for ...

متن کامل

Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators

The force sensor is key to the performance of atomic force microscopy (AFM). Nowadays, most atomic force microscopes use micromachined force sensors made from silicon, but piezoelectric quartz sensors are being applied at an increasing rate, mainly in vacuum. These self-sensing force sensors allow a relatively easy upgrade of a scanning tunneling microscope to a combined scanning tunneling/atom...

متن کامل

Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor

We report a new method of achieving tip–sample distance regulation in an atomic force microscope ~AFM!. A piezoelectric quartz tuning fork serves as both actuator and sensor of tip–sample interactions, allowing tip–sample distance regulation without the use of a diode laser or dither piezo. Such a tuning fork has a high spring constant so a dither amplitude of only 0.1 nm may be used to perform...

متن کامل

Calibrating a tuning fork for use as a scanning probe microscope force sensor.

Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015